Знаймо

Додати знання

приховати рекламу

Цей текст може містити помилки.

Еніон



План:


Введення

Еніон ( англ. Anyon ) - Тип частинок, існуючих в двомірних системах, які являють собою узагальнення понять ферміонів і бозон.


1. Теоретичне обгрунтування

У 1977 році група фізиків-теоретиків з університету Осло під керівництвом Йона Магне Лейнааса і Яна Мірхейма довела, що традиційний поділ часток на Ферміон і бозони не застосовне до теоретичних часткам, існуючим у двох вимірах. Такі частинки могли б мати ряд несподіваних властивостей. Френк Вільчек в 1982 році запропонував для них назву еніони (від англ. any - Будь-який). [1]

Бертран Гальперін з Гарвардського університету показав корисність математичного апарату, пов'язаного з еніонамі, в поясненні деяких аспектів дробового квантового ефекту Холла. У 1985 році Френк Вільчек, Ден Аровас і Роберт Шріффер перевірили це твердження точними розрахунками і довели, що частки, існуючі в цих системах, дійсно є еніонамі.


2. Експериментальне підтвердження

У 2005 році група фізиків з університету Стоуні-Брук побудувала інтерферометр квазічастинок, на якому Володимир Голдман і його колеги виявили кілька подій, викликаних інтерференцією еніонов. [2] За допомогою електричних полів вони сформували на поверхні поміщеного в магнітне поле напівпровідника тонкий диск, оточений кільцем. Усередині диска народжуються квазічастинки із зарядом, рівним двом п'ятий заряду електрона, а в кільці - однієї третини. Аналіз отриманих даних підтвердив, що квазічастинки в кільці і усередині диска можуть стабільно народжуватися і зникати лише групами певної чисельності, тобто вони підкоряються статистиці еніонного типу.

Розвиток напівпровідникової технології, а саме напилення тонких двовимірних шарів, наприклад, листів графена, задає потенціал використання властивостей еніонов в електроніці.


3. Математичний апарат

У тривимірному (і більше) просторі частинки строго діляться на Ферміон і бозони, згідно з тим, якою статистикою вони підпорядковуються: Ферміон - статистикою Фермі-Дірака, бозони - статистиці Бозе-Ейнштейна. На мові квантової фізики це формулюється як поведінку багаточастинкових станів при заміні частинок. Наприклад, у випадку двочасткові стану маємо (в позначеннях Дірака):

Однак, в двовимірних системах можна спостерігати квазічастинки, які підпорядковуються розподілу, варіює безперервно між статистиками Фермі-Дірака і Бозе-Ейнштейна:

\ Left | \ psi_1 \ psi_2 \ right \ rangle = e ^ {i \, \ theta} \ left | \ psi_2 \ psi_1 \ right \ rangle ,

де \ Theta - дійсне число. При \ Theta = \ pi ми маємо статистику Фермі-Дірака, а при \ Theta = 2 \ pi - статистику Бозе-Ейнштейна. У випадку ж \ Pi <\ theta <2 \ pi виходить щось інше, зване еніоном.

Можна також ввести поняття спина s еніона, зіставивши його \ Theta :

\ Theta = 2 \ pi s

Еніони описуються статистикою, яку називають статистикою кіс ( англ. Braid statistics ), Оскільки вона пов'язана з теорією кіс.


Примітки

  1. Frank Wilczek on anyons and their Role in Superconductivity - archive.sciencewatch.com/interviews/frank_wilczek1.htm
  2. Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics - prola.aps.org/abstract/PRB/v72/i7/e075342 Physical Review, Phys. Rev. B 72, 075 342 (2005)

Література

  • Stepan Duplij, Warren Siegel, Jonathan Bagger Concise Encyclopedia Of supersymmetry - books.google.ru / books? id = eHEyX_jiX4wC & lpg = PA36 & dq = anyon - A particle or excitation & pg = PA36 # v = onepage & q = anyon - A particle or excitation & f = false

Цей текст може містити помилки.

Схожі роботи | скачати
© Усі права захищені
написати до нас